
戦略的環境アセスメントと自然史博物館

- 地理情報システムを用いた生態系評価 -

兵庫県立人と自然の博物館 三橋 弘宗

今回の講演野生物を対象とする

多様な生息場所(景観要素)が残存生息場所(景観要素)の健全度を表す

- •冷水性、水質
- ・林縁部、海との連続性
- ・大面積の森林や湿地など

戦略的環境アセスメント

- ・事業計画策定前の段階から環境影響 評価を行おうという考え方
- •広域計画などの策定段階まで環境影響 評価を拡大するもの

要するに前もって評価しておこう!

評価するとは?

・地域の特性を明らかにすること

『地域の差別化』

『地図化すること』

地域をまんべんなくカバーする 豊富な判断材料(データ)が必要!

あなたは、どこにデータ を探しに行きますか?

データは、どこにどれだけあるのだろうか?

自然史のデータはどのくらいあるのか?

(例)

兵庫県の水生動物の場合

印刷物:約2,000本

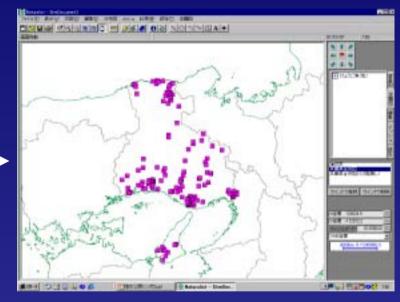
調査地点:約20,000地点

水環境に関連する部局:約30個所

収蔵品:約10,000点

アマチュアのコレクション:多分10万点を超える

同好会の採集記録:約10万件


行政資料:未知数 情報の絶滅?!

自然史のデータベースをつくる

標本だけでなく情報も収蔵する

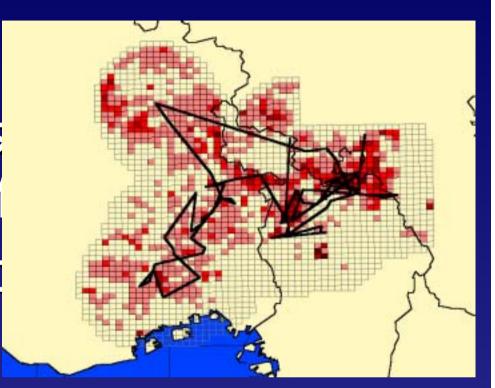

デジタル化

地理情報システム(GIS)

『もの』をためる 博物館

分散したデータの統合

データの出典


- ・県河川課
- ·県環境政策課
- 県保健所
- ·国土交通省
- ・環境省
- •博物館
- ・論文

淡水魚の多様性 ホットスポット

縦割り行政の解消と事業の効率化

しかし・・・

- ・ 生物の分布データ ことは極めて困難
- 過去の環境改変に 種は追跡不可能

点の情報から面を予測する

ポテンシャルハビタットを推定する (潜在的な生息地)

事前に重要な場所を把握する!

- •希少な種が密集する場所 生物多様性ホットスポット分析
- •希少種や指標種が生息しそうな場所 ポテンシャルハビタット分析
- ・好適地だが、法の規制が掛ってない場所ギャップ分析
- ・各種開発の適地となっている場所 脆弱性分析

具体例で紹介

(有)地域生態系保全 村上俊明氏との共同研究

兵庫県版RDB:Bランク

カスミサンショウウオ
Hynobius nebulosus

森林とそれに接する浅い 水辺がセットで必要

農村のエコトーン の指標種

解析作業の流れ

産卵場所情報の 収集

産卵場所の位置情報から生息条件の閾値を求める

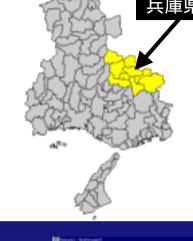
地域全体の中で閾値を 満たす場所(ハビタット) を抽出する

ハビタット分布量と移動コストを加え、距離別にロジスティック回帰分析

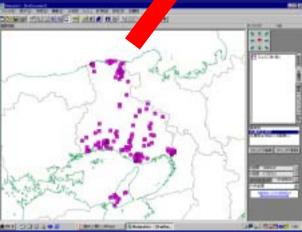
最も正解率の高い距離 を採用して作図 オーバーレイによる 危険箇所の抽出と 対策の検討

ポテンシャルマップと、 法規制・人為圧との重 ね合わせ

危険箇所の抽出

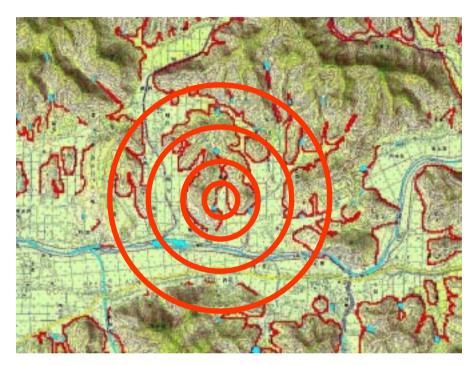

具体的な保全対策の 検討

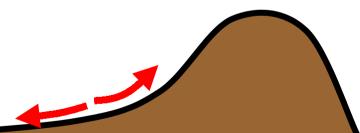
情報の収集


兵庫県丹波地域

入力

聞き込み情報


地理情報システム(GIS)


ポテンシャルマップの作成

ハビタットの抽出

近隣にあるハビタット 分布量を集計

統計モデルによる 検証

ロジスティック回帰分析

さらに移動コストを考慮する

周辺の傾斜量積算値

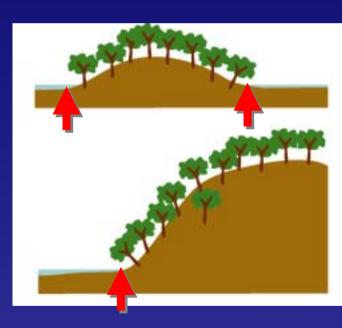
独立変数

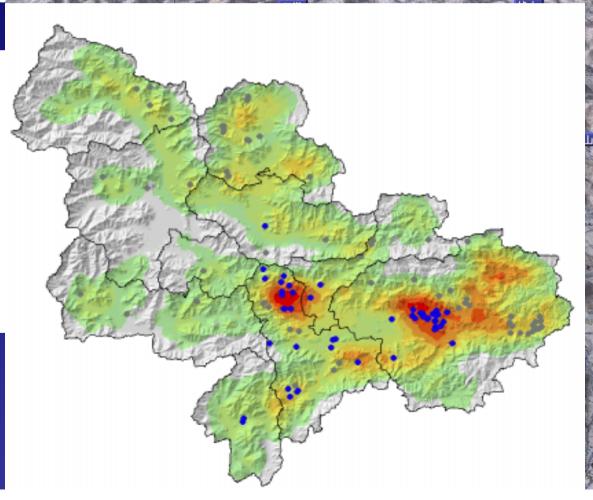
ハビタット分布量 (距離別に8種類) 移動コスト

(距離別に8種類)

ロジスティック回帰の結果

Variable		Coefficien	S.E.	Significance	ODDS
ハビタット分布量	2000	33.28	8.1	<0.0001	28430000
ハビタット分布量	50	-1.95	1.09	0.074	0.142
傾斜量	2000	-0.21	0.09	0.022	0.807
傾斜量	100	-1.95	0.2	0.014	0.696
傾斜量	50	0.31	0.13	0.02	1.36
Constant		1.2	2.15	0.58	


 $^{2} = 69.02 p < 0.0001$


正答率 8 6 %

近隣200mの範囲のハビタット分布量 近隣100mの傾斜量積算値

ポテンシャルマップの作成

·好適な産卵場所が密集している場所、 緩傾斜地で出現頻度が高い 里山?

どこを保全すれば良いのか?

何処にどんな対策が必要なのかを地図で示す

- ・生息ポテンシャル vs 人為圧 vs 法規制
- ・具体的なアクションプランを地図化

生息ポテンシャル

人為的圧力

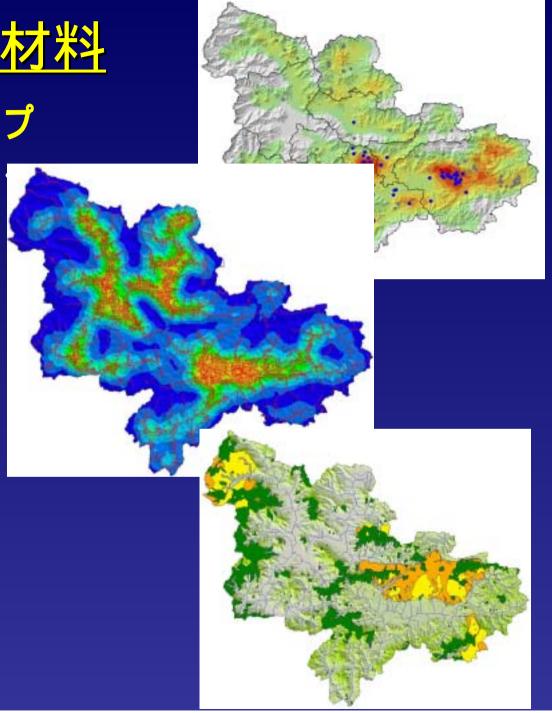
オーバーレイの材料

生息ポテンシャルマップ

生息場所分布図・土地利用図 起伏度分布図等から算出

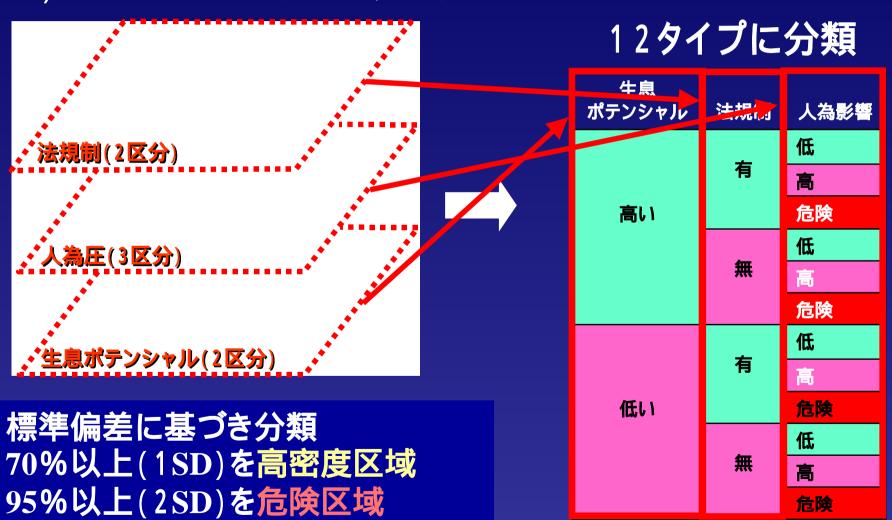
人為影響の程度

・道路網図


(国土地理院地形図からトレース)

・道路密度図

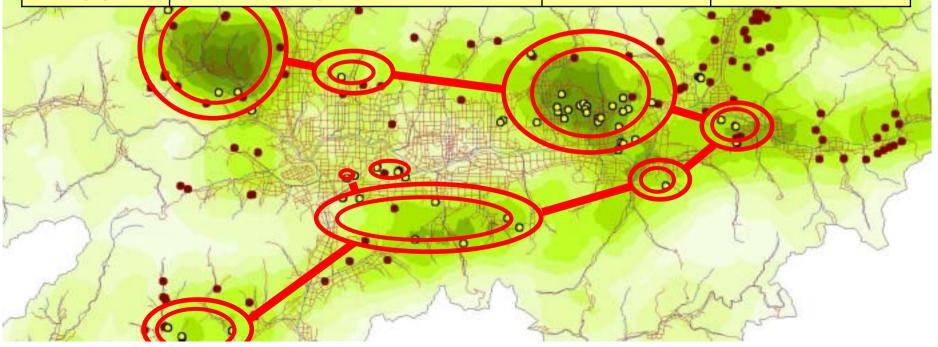
(道路網図から算出)


法規制図

- ・保安林位置図 (兵庫県)
- ・自然公園等位置図 (兵庫県)

オーバーレイ

- 1) 重ね合わせによって、特徴的な地域を区分
- 2) 区分された地域ごとに、適切な保全対策を検討



区分されたエリア

生息ポテンシャル	法規制	人為 影響	面積比(%)	産	IP 万娄女	地域区分	
_		低	14.3 (3.1)		3	Α	このまま保全努力
高い無	有	高	1.8 (0.4)		1	В	保全努力
		危険	0.03(0.01)		0	С	
	無	低	55.6 (12.1)		14	D	保全地域指定を含む中~長期対策
		高	20.9 (4.6)		28	Ε	保全地域指定を含む早急な対策
		危険	7.4 (1.6)		4	F	保全地域指定を含む緊急対策

保全のシナリオ

順序	内容	対象区域	主体
1)短期計 画	危ないところから手を打つ 産卵場所の確保等	F E	NGOの役割
2)中期計画	現在良好なところをより拡大する	D	NGOおよび地 域
3)長期計 画	ポテンシャルの高い場所同士を ネットワーク化	D	行政
		A. C.	1)

博物館と戦略的環境アセスメント

- ・分布情報は最も大切な情報
- ・市民の情報も環境保全に役立つ
- ・アクションプランの提示

協力:丹波農村ビオトープ連絡会

博報を『収集』

1

『貯蔵』

『解析』

『発信』する博物館

壞項計世

CID (VEVI)

アクションプランの提示